Triangulating Social Multimedia Content for Event Localization using Flickr and Twitter
نویسندگان
چکیده
The analysis of social media content for the extraction of geospatial information and event-related knowledge has recently received substantial attention. In this article we present an approach that leverages the complementary nature of social multimedia content by utilizing heterogeneous sources of social media feeds to assess the impact area of a natural disaster. More specifically, we introduce a novel social multimedia triangulation process that uses both Twitter and Flickr content in an integrated two-step process: Twitter content is used to identify toponym references associated with a disaster; this information is then used to provide approximate orientation for the associated Flickr imagery, allowing us to delineate the impact area as the overlap of multiple view footprints. In this approach, we practically crowdsource approximate orientations from Twitter content and use this information to orient Flickr imagery accordingly and identify the impact area through viewshed analysis and viewpoint integration. This approach enables us to avoid computationally intensive image analysis tasks associated with traditional image orientation, while allowing us to triangulate numerous images by having them pointed towards the crowdsourced toponym location. The article presents our approach and demonstrates its performance using a real-world wildfire event as a representative application case study.
منابع مشابه
Image Mining in the Context of Content Based Image Retrieval: A Perspective
The emergence and proliferation of social network sites such as Facebook, Twitter and Linkedin and other multimedia networks such as Flickr has been one of the major events of this century. These networks have acquired immense popularity and have become a part of the daily lives of millions of people. Many of these network sites are thus extremely rich in content, and contain a tremendous amoun...
متن کاملSocial Network Data Analytics Social Network Data Analytics
The advent of online social networks has been one of the most exciting events in this decade. Many popular online social networks such as Twitter, LinkedIn, and Facebook have become increasingly popular. In addition, a number of multimedia networks such as Flickr have also seen an increasing level of popularity in recent years. Many such social networks are extremely rich in content, and they t...
متن کاملLarge-scale cross-media analysis and mining from socially curated contents
The major interest of the current social network service (SNS) developers and users are rapidly shifting from conventional text-based (micro)blogs such as Twitter and Facebook to multimedia contents such as Flickr, Snapchat, MySpace and Tumblr. However, the ability to analyze and exploit unorganized multimedia contents on those services still remain inadequate, even with state-of-the-art media ...
متن کاملSentiment Analysis Using Social Multimedia
Sentiment analysis is one of the most active research areas in natural language processing, web/social network mining, and text/multimedia data mining. The growing importance of sentiment analysis coincides with the popularity of social network platforms, such as Facebook, Twitter, and Flickr, which provide a rich repository of people’s opinion and sentiment about a vast spectrum of topics. Mor...
متن کاملAn Introduction to Social Network Data Analytics
The advent of online social networks has been one of the most exciting events in this decade. Many popular online social networks such as Twitter, LinkedIn, and Facebook have become increasingly popular. In addition, a number of multimedia networks such as Flickr have also seen an increasing level of popularity in recent years. Many such social networks are extremely rich in content, and they t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trans. GIS
دوره 19 شماره
صفحات -
تاریخ انتشار 2015